A Real-Time Region-Based Motion Segmentation Using Adaptive Thresholding and K-Means Clustering
نویسندگان
چکیده
This paper presents an approach for a real-time region-based motion segmentation and tracking using an adaptive thresholding and k-means clustering in a scene, with focus on a video monitoring system. In order to reduce the computational load to the motion segmentation, the presented approach is based on the variation regions application of a weighted k-means clustering algorithm, followed by a motion-based region merging procedure. To indicate motion mask regions in a scene, instead of determining the threshold value manually, we use an adaptive thresholding method to automatically choose the threshold value. To image segment, the weighted k-means clustering algorithm is applied only on the motion mask regions of the current frame. In this way we do not to process the whole image so that the computation time is reduced. The presented method is able to deal with occlusion problems. Results show the validity of the presented method.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملComparison of Different Segmentation Algorithms for Dermoscopic Images
This paper compares different algorithms for the segmentation of skin lesions in dermoscopic images. The basic segmentation algorithms compared are Thresholding techniques (Global and Adaptive), Region based techniques (K-means, Fuzzy C means, Expectation Maximization and Statistical Region Merging), Contour models (Active Contour Model and Chan Vese Model) and Spectral Clustering. Accuracy, se...
متن کاملA A HASEENA THASNEEM et al.: COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS FOR DERMOSCOPIC IMAGES
This paper compares different algorithms for the segmentation of skin lesions in dermoscopic images. The basic segmentation algorithms compared are Thresholding techniques (Global and Adaptive), Region based techniques (K-means, Fuzzy C means, Expectation Maximization and Statistical Region Merging), Contour models (Active Contour Model and Chan Vese Model) and Spectral Clustering. Accuracy, se...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کامل